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SUMMARY

A key effector route of the Sugar Code involves lec-
tins that exert crucial regulatory controls by target-
ing distinct cellular glycans. We demonstrate that
a single amino-acid substitution in a banana lectin,
replacing histidine 84 with a threonine, signifi-
cantly reduces its mitogenicity, while preserving
its broad-spectrum antiviral potency. X-ray crystal-
lography, NMR spectroscopy, and glycocluster as-
says reveal that loss of mitogenicity is strongly
correlated with loss of pi-pi stacking between aro-
matic amino acids H84 and Y83, which removes a
wall separating two carbohydrate binding sites,
thus diminishing multivalent interactions. On the
other hand, monovalent interactions and antiviral
activity are preserved by retaining other wild-type
conformational features and possibly through
unique contacts involving the T84 side chain.
Through such fine-tuning, target selection and
downstream effects of a lectin can be modulated
so as to knock down one activity, while preserving
another, thus providing tools for therapeutics and
for understanding the Sugar Code.
746 Cell 163, 746–758, October 22, 2015 ª2015 Elsevier Inc.
INTRODUCTION

Protein-carbohydrate interactions play essential roles in many

biological processes, including adhesion and growth regulation,

infection, and tumor pathogenesis (Gabius, 2015; Solı́s et al.,

2015). Glycan-encoded information can be translated into

cellular effects by receptors, termed lectins (Boyd, 1954). These

carbohydrate-binding proteins are widely found in nature, have

been put to considerable use in many aspects of glycobiology

(André et al., 2015; Gabius et al., 2011, 2015), and have the po-

tential to be used as antiviral agents. By specifically binding to

mannosides of the glycans of glycoproteins on the surface of a

virus, they can block viral attachment and/or fusion to cells.

Possible clinical applications of lectins suffer from a major

drawback, the potential for side effects mediated by lectin-

inducedmitogenicity (Borrebaeck and Carlsson, 1989). If a mito-

genic lectin were used topically in an anti-HIV microbicide, it

could lead to uncomfortable inflammation, an increase in viral

transmission, and even greater HIV replication because of its

ability to activate T cells. Given parenterally, a mitogenic lectin

could lead to systemic inflammation (Huskens et al., 2008). To

date, it has remained entirely unclear whether mitogenicity and

antiviral activity are dissectible in a given lectin.

We set out to rationally engineer a plant lectin isolated from the

fruit of bananas (Musa acuminata, BanLec) (Singh et al., 2014),

so as to eliminate its mitogenicity, while retaining its potent
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Figure 1. The H84T BanLec Mutant Is Significantly Less Mitogenic than Is WT BanLec

(A) Comparisons of the mitogenic activity of H84T to recombinant WT BanLec. PBLs from two different donors were treated with varying concentrations of lectin

for 3 days and then tested for mitogenic activity by measuring BrdU incorporation by ELISA. A stimulation index of less than ten (gray line) is considered non-

mitogenic. The samples for each donor were analyzed in triplicate, and error bars represent SEM. The D133G BanLec mutant, in which CBS I is altered (see

Figure 4), is not mitogenic but also lacks any antiviral activity.

(B) Induction of the activation marker CD69 on CD4 T cells in the presence of WT or H84T as measured by flow cytometry, 1 or 3 days post-treatment.

(C) Induction of cytokines/chemokines by WT and H84T BanLec. PBMCs from healthy donors were incubated for 72 hr with WT or H84T BanLec at 2 mg/ml.

Supernatants were collected, and cytokine levels were measured by the Bio-Plex array system. The fold-increase values of the cytokine concentrations in the

supernatant of stimulated PBMCs with respect to the concentrations in the supernatant of untreated PBMCs were determined for samples from four different

donors. The fold-increase values are divided into subgroups: 1- to 3-fold increase (white squares), 3- to 10-fold increase (yellow squares), 10- to 100-fold increase

(orange squares), 100- to 500-fold increase (dark red squares), and >500-fold increase (black squares).

See also Figure S1.
antiviral activity. BanLec is a member of the mannose-specific

jacalin-related lectin (mJRL) group that functions as a potent

T cell mitogen (Singh et al., 2014). It forms a dimer with two car-

bohydrate-binding sites (CBS I and CBS II) in each protein

subunit (Meagher et al., 2005; Singh et al., 2005). BanLec avidly

associates with high-mannose-type N-glycans on the HIV-1 en-

velope and can thus block viral entry into cells (Swanson et al.,

2010; Férir et al., 2011). Here, we show that a mutation within

the sugar-binding site in BanLec makes it possible to signifi-

cantly decrease mitogenic activity without compromising anti-

viral activity against HIV, hepatitis C virus (HCV), and influenza

virus, all of which have high-mannose-type N-glycans on their

surfaces. This new form of BanLec thus has the potential to be

used as a broad-spectrum antiviral agent, something that is

presently not available in the clinic. Further, we detail the molec-

ular basis for separating these two distinct activities of the lectin.

Our results provide proof of the feasibility of re-engineering

target specificity and activity of a lectin, an approach that will

greatly help to clarify how lectins read and transmit information

through the Sugar Code, the biochemical platform that turns

complex, sugar-encoded information into a broad spectrum of

biological activities (Gabius et al., 2011; Murphy et al., 2013;

Solı́s et al., 2015).

RESULTS

The Antiviral and Mitogenic Activities of BanLec Can
Be Uncoupled through the Substitution of a Single
Amino Acid
The BanLec cDNA was cloned, and the recombinant protein

containing a 6x His-tag, with the sequence LEHHHHHH, ex-

pressed in Escherichia coli. Unless stated otherwise, all of the

BanLec proteins utilized in this study are recombinant versions

containing a His-tag. The recombinant His-tagged version of
BanLec maintains mannose-binding properties as measured

by isothermal titration calorimetry (ITC) (see discussion below)

and anti-HIV activity (Figure S1). Natural BanLec is a mitogen

(Gavrovic-Jankulovic et al., 2008), and we confirmed this finding

with the recombinant version by exposing peripheral blood lym-

phocytes (PBLs) to the lectin for 3 days and measuring incorpo-

ration of bromodeoxyuridine (BrdU) (Figures 1A and S1).

To pinpoint potentially promising sites for mutational engi-

neering, we examined crystal structures of the b-prism I struc-

ture, which is characteristic for the JRL family (Meagher et al.,

2005; Singh et al., 2005). This fold consists of three Greek key

structures composed of b strands; distinct loops found in the

Greek keys play a role in carbohydrate binding. The first and

second Greek keys include the JRL consensus motif GXXXD

for sugar binding, and when mutations were introduced into

these Greek keys, they abolished the mitogenic activity (as

seen with the D133G mutant shown in Figure 1A), but also re-

sulted in a loss of almost all anti-HIV activity (data not shown).

The third Greek key varies among JRL members in length and

sequence and is thought to play a role in binding glycan struc-

tures beyond simple saccharides (Nakamura-Tsuruta et al.,

2008). H84 is part of this third loop, known to be involved in

binding the second sugar moiety in a1,6-dimannosides (Singh

et al., 2005). Therefore, we reasoned that altering this amino

acid might result in a change in binding characteristics that

would affect the lectin’s mitogenic and antiviral activities

differentially.

Several H84 BanLec mutants were constructed (see further

discussion below), and one variant, H84T, in which the histidine

is replaced by a threonine, was found to not stimulate the prolif-

eration of lymphocytes at concentrations up to 1 mM (Figure 1A).

While increased cell-surface expression of the activation marker

CD69 was observed for BanLec-treated CD4+ peripheral blood

mononuclear cells (PBMCs), the H84T variant induced very little
Cell 163, 746–758, October 22, 2015 ª2015 Elsevier Inc. 747



Table 1. Anti-HIV Activity Profile of BanLec, H84T BanLec, Microvirin, and the 2G12 Monoclonal Antibody in PBMCs

HIV-1 HIV-2

Lab Strain Group M Group O

NL4.3 BaL B C F G H

US2 DJ259 BZ163 BCF-DIOUM BCF-KITA BCF-06 BV-5061W

(X4) (R5) (R5) (R5) (R5) (R5) (R5) (X4) (X4)

MVNa 8 22 2 167 nd nd nd >350 >350

BanLeca 0.87 0.87 1.1 2.2 2.5 6.5 3.6 14 3.7

H84T BanLeca 2.1 0.93 1.5 0.47 3.1 4.1 1.2 0.73 0.33

2G12 mAbb 140 3,710 40 >50,000 >20,000 >20,000 >20,000 >20,000 >20,000

Viral co-receptor usage (R5 or X4) is determined in U87.CD4.CCR5 and U87.CD4.CXCR4 cells and indicated in parentheses. MVN, Microvirin; nd, not

determined.
a50% inhibitory concentration (IC50) in nanomolars required to inhibit viral p24 (for HIV-1) or p27 (for HIV-2) production by 50% in PBMCs.
bAntibody concentration in nanograms per milliliter required to inhibit viral p24 (for HIV-1) or p27 (for HIV-2) production by 50% in PBMCs.
stimulation of this same marker (Figure 1B). Moreover, wild-type

(WT) BanLec consistently caused a large increase in the induc-

tion of cytokines from the PBMCs of multiple individual donors,

whereas the response to H84T was markedly reduced (Fig-

ure 1C). Thus, H84T, unlike naturally occurring and WT recombi-

nant BanLec, is minimally mitogenic when tested by three inde-

pendent methods on the peripheral blood cells of multiple

different donors.

In contrast to its loss of mitogenicity, the H84T variant had an

IC50 value against HIV in the low nanomolar range and was

equally effective at inhibiting a wide range of HIV isolates as

wasWTBanLec, includingmultiple clinical isolates from different

clades of groupM, a groupO clinical isolate, and a clinical isolate

of HIV-2 (Table 1). Of note, a number of the isolates that were

susceptible to H84T at low nanomolar concentrations required

higher concentrations of the anti-HIV lectin Microvirin and/or

were very difficult to inhibit with 2G12, a classic neutralizing

anti-HIV monoclonal antibody (Table 1). Recombinant H84T

without the His-tag showed very similar anti-HIV activity (data

not shown).

To determine the capacity of H84T BanLec to preventmucosal

HIV transmission, we utilized the bone-marrow-liver-thymus

(BLT) humanized mouse model (Wahl et al., 2012). H84T or

PBS (the carrier) was topically applied to the vagina prior to chal-

lenge with HIV-1JR-CSF. A total of 50% of the mice treated vagi-

nally with PBS became infected, as determined by the presence

of viral RNA in the plasma. In contrast, none of the mice treated

topically with H84T showed detectable levels of viral RNA in the

plasma during the course of the experiment (p = 0.0359;

Figure 2A).

The antiviral efficacy of H84T was further evaluated against

another important pathogenic virus that presents oligomanno-

side chains on its surface proteins, hepatitis C virus (HCV;

Goffard et al., 2005). An intergenotypic HCVcc reporter virus,

i.e., BiGluc-Con1/Jc1, was tested in Huh-7.5 cells (Figure S2)

(Reyes-del Valle et al., 2012). The addition of H84T to the inoc-

ulum decreased HCV in a dose-dependent manner and to levels

comparable to inhibition by CD81 antibody, a positive control

that blocks the cellular receptor for HCV (Figure S2A; data not

shown). Co-incubation of virus inoculum with the BanLec deriv-

ativeD133G/38A,which, similar to theD133Gmutant (Figure 1A),
748 Cell 163, 746–758, October 22, 2015 ª2015 Elsevier Inc.
is inactive, was found to not decrease viral replication (Fig-

ure S2B). At the EC90 concentration (determined in Huh-7.5

cells), H84T also reduced HCV replication to levels similar to

neutralizing E2 antibody in a primary human fetal liver culture

(data not shown). Finally, to determine if the H84T-specific

reduction of HCV was due to inhibition of viral RNA replication,

the effect of H84T BanLec was monitored in Huh-7.5 CD81

knockdown cells (CD81lo; Figure S2C). In this single-cycle assay,

H84T decreased HCV replication over time in the control cell

background only, further supporting the hypothesis that H84T in-

hibits viral replication at entry (receptor binding, membrane

fusion), consistent with what we previously observed with WT

BanLec against HIV (Swanson et al., 2010).

Glycosylation sites on the HCV E1 and E2 envelope proteins

are highly conserved across genotypes (Goffard et al., 2005). Uti-

lizing a panel of chimeric Gaussia luciferase reporter viruses, in

which the structural region (core-NS2) was encoded by differing

genotypes, H84T was observed to decrease HCV replication

in a dose-dependent manner (Figures 2B–2J; Table S1). H84T

BanLec thus appears to be a pan-genotypic inhibitor of HCV

infection.

The hemagglutinin of influenza A viruses bears high-mannose-

type N-glycans that are susceptible to host lectins (Ng et al.,

2012). In studies employing a retroviral core pseudotyped with

the hemagglutinins of the 1918 H1N1 and the H5N1 avian

pandemic influenza viruses, WT and H84T BanLec were both

very active and equally inhibitory (Figures 2K and 2L).

Next, we found that H84T BanLec is very active against multi-

ple WT strains of influenza A tested in MDCK cells in tissue cul-

ture. Significant activity was seen against A/California/04/2009

(H1N1 pandemic strain), California/07/2009 (H1N1 pandemic

strain), A/New York/18/2009 (H1N1 pandemic strain), and

Perth/16/2009 (H3N2) with EC50 values of 1–4 mg/ml versus

H1N1 virus and 0.06–0.1 versus H3N2 virus. A mutant form of

BanLec that does not bind mannose, D133G/D38A, had no ac-

tivity, excluding carbohydrate-independent effects. Importantly,

significant activity was also seen with H84T against the Duck/

MN/1525/81 H5N1 avian strain (EC50 of 5–11 mg/ml), confirming

our results obtained with pseudotyped virus (Figure 2L). Finally,

as some mouse-adapted strains of influenza lack mannose

on their hemagglutinin (Smee et al., 2008), we tested an H1N1



Figure 2. H84T BanLec Has Potent Antiviral Activity In Vitro and In Vivo

(A) Protection from vaginal HIV-1JR-CSF infection of BLT humanized mice by H84T BanLec. Mice were vaginally exposed to HIV in the presence or absence of

topical H84T. HIV infection was determined by the presence of plasma viral load over a period of observation of 6 weeks. The times to plasma viremia were then

combined to generate a Kaplan-Meier plot of the protection from vaginal HIV infection provided by H84T BanLec. Log rank analysis (p = 0.0359) confirmed that

topically administered H84T prevents vaginal HIV-1 JR-CSF infection in BLT mice.

(B–J) Increasing concentrations of H84T (0, 10, 20, 40, 80, 160, 320, 640, and 1,280 nM) were mixed with the indicated HCVcc inoculum at a MOI of 0.1 or 0.05.

After 6 hr incubation, cells were washed and media containing additional lectin was added. At 72 hr post-infection, HCV replication was analyzed by luciferase

activity in supernatants. All HCVcc were bicistronic Gaussia luciferase reporter genomes, of which structural proteins were encoded by differing genotypes as

indicated. Themeans and SD are plotted for two independent experiments containing five replicates each. The corresponding EC50/90 values and their respective

confidence intervals were determined and are displayed in Table S1. See also Figure S2.

(K) The activity of WT or H84T BanLec against the 1918 H1N1 pandemic influenza strain as measured by luciferase assay in the pseudotyped virus system

described in the Experimental Procedures.

(L) The activity of WT and H84T against the H5N1 avian influenza strain as assessed in (K).

(M). Survival of mice challenged intranasally with influenza and then treated with H84T BanLec or control intranasally 4 hr after challenge and then daily for

5 days.
(A/WSN/1933) isolate previously shown to be inhibited by

mannose-binding proteins for its sensitivity to our new agent.

H84T was indeed quite active against this H1N1 strain, which

causes disease in mice. Most importantly, we found that intra-

nasal (IN) H84T BanLec, first given 4 hr after IN viral challenge,

effectively blocks influenza infection in the mouse model (Fig-

ure 2M). Taken together, studies with pseudotyped virus, WT

virus in tissue culture, and a mouse model of influenza demon-

strate significant activity of H84T against multiple strains of

influenza.
H84T BanLec Is Less Active in Multivalent Interactions
To begin to delineate the basis for the H84T mutant protein’s

markedly decreased mitogenic and pro-inflammatory activity,

while yet maintaining its potent antiviral capacity, binding

properties of H84T and WT BanLec to monovalent sugars in so-

lution were compared. The association constants (Ka) measured

using isothermal titration calorimetry (ITC) for binding to methyl

a-D-mannopyranoside were similar for recombinant His-tagged

WT (383 mM�1) and H84T (353 mM�1) and were consistent

with previous measurements for naturally occurring BanLec
Cell 163, 746–758, October 22, 2015 ª2015 Elsevier Inc. 749



(333 mM�1) (Mo et al., 2001; Winter et al., 2005). Interestingly,

slightly weaker affinities were observed for H84T as compared

to WT when analyzing binding to dimannoside (300 versus

227 mM�1 for WT and H84T, respectively) (Table S2).

As mitogenicity involves cross-linking of distinct counterre-

ceptors on cell surfaces that trigger outside-in signaling, the

loss of mitogenicity seen with H84T and its slightly diminished

binding affinity for disaccharides compared tomonosaccharides

suggested that the biological differences between the two pro-

teins might arise due to the differences in their binding properties

to more complex glycans. A simple assay that provides insight

into binding to cell-surface glycans and cross-linking activity

(here in trans, that is, between cells) is measuring lectin-induced

aggregate formation of erythrocytes. The minimal concentra-

tions for agglutination were found to be significantly different,

i.e., at 3 and 437 mg/ml for WT and H84T, respectively (Table

S2). This result reveals a marked disparity in building stable

aggregates based on more than monovalent interactions with

cell-surface mannosides.

Synthetic glycoclusters are excellent tools that range in size

from bivalent compounds to glycodendrimersomes (Murphy

et al., 2013; Solı́s et al., 2015), so their locally increased density

of ligands will trace a change in the interaction/association

profile when testingWT and variant proteins under identical con-

ditions. The association of a lectin with a ligand-bearing surface

is sensitive to the presence of haptenic sugar, and its presenta-

tion in local clusters can enhance its inhibitory capacity.

Mimicking the natural display of high-affinity ligands, synthetic

glycoconjugates (carbohydrates attached to a scaffold enabling

oligo- to polyvalency) thus are able to interfere with lectin binding

to ligand-presenting surfaces in quantitative terms. The design

of glycoclusters and the determination of their inhibitory activity

on lectin binding (to glycoproteins or to a cell), measured as the

inhibitory concentration (IC) at which the extent of lectin binding

to a glycoligand is reduced by 50% (IC50 value), provide a mea-

sure of the avidity of a lectin for multivalent associations. In total,

we tested a panel of 11 bi- to dodecavalent glycoclusters sys-

tematically in titrations in two types of assay, one biochemical

and one cellular. In both cases, the mannose-specific lectin

concanavalin A was used as positive control, and lectin binding

to the glycan-presenting matrix was ascertained to be saturable

and dependent on carbohydrate presence.

First, we established a surface rich in presentation of

mannose residues. A neoglycoprotein (a conjugate of albumin

and mannose derivatives) was adsorbed to the plastic surface

of microtiter plate wells, building the matrix for letting the bio-

tinylated lectins dock. The surface-associated label was then

quantitatively assessed spectrophotometrically. Titrations of

the extent of binding with increasing amounts of inhibitor were

performed to determine the IC50 value; the glycoclusters (Fig-

ure 3A) were individually tested. As demonstrated by the

example shown in Figure 3B, these experiments allowed us to

determine IC50 values as a measure for sensitivity of lectin bind-

ing in the presence of inhibitors. Binding of the H84T mutant was

found to be much more susceptible to glycocluster inhibition

than was surface contact formation of the WT BanLec, consis-

tent with the lower cross-linking capacity in hemagglutination

(Tables S2 and S3).
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To confirm the above and increase the biological relevance of

the findings, we proceeded to monitor cell binding, using the

surface of cultured cells as a platform for contact of the labeled

lectins. Tested under identical conditions, WT reacted more

strongly with cells than did H84T (Figures 3Ca and 3Cb). In addi-

tion to testing the physiologic glycome profile on the cells, we

increased the level of lectin-reactive high-mannose-type N-gly-

cans by treating the cells with the a-mannosidase I inhibitor 1-

deoxymannojirimycin. Enhanced binding of both proteins was

seen (Figures 3Cc and 3Cd), with the difference in mean fluores-

cence intensity between H84T and WT being maintained. Thus,

increased ligand availability did not reduce the relative difference

betweenH84T andWTproteins. Glycocluster testing on cells, for

example, the tetravalent compound 11 (Figures 3Ce and 3Cf),

fully confirmed the differential sensitivity seen in the solid-phase

assays. These results are completely consistent with the

decreased capacity for H84T BanLec to agglutinate erythrocytes

and further confirm that H84T and WT differentially interact with

multivalent surfaces, but not with the monosaccharide.

High-Resolution X-Ray Structures Reveal Loss of Pi-Pi
Stacking between Y83 and H84 and an Altered Sugar
Contact Profile in H84T
To examine the structural basis for the difference in carbohy-

drate-binding modes between WT and H84T, we determined

the crystal structures of the recombinant proteins both in the

absence and in the presence of dimannoside (M2) (Figure 4).

The X-ray structure of recombinant WT BanLec was very similar

to its naturally occurring, purified counterpart (Meagher et al.,

2005), consistent with the similar biological activities of the two

proteins. The monomer forms a b-prism I fold containing three

Greek key motifs with 3-fold symmetry and two carbohydrate-

binding sites (CBS I and II). CBS I consists of loops on the

top of the first Greek key; CBS II sits on the top of the second

Greek key. The two binding sites are separated by a loop (resi-

dues 83–88) within the third Greek key (Figure 4A), which has

been suggested to be an important determinant of carbohydrate

binding specificity (Meagher et al., 2005); H84 is within this loop.

It is worth noting that glycerol units were observed in the different

binding sites of the WT protein.

Both recombinant His-tagged proteins (WT and H84T) and

the WT from bananas form a dimeric structure with interface

between b strand 1 (residues 4–10), b strand 10 (residues

110–118), and two C-terminal residues (E140 and P141) from

each monomer, resulting in a quasi-eight-stranded b sandwich

structure. The presence of the C-terminal His-tag on recombi-

nant WT and H84T neither altered the dimer interface nor did its

presence disrupt the non-biological asymmetric tetramer that

formed due to crystal packing in all the reported BanLec

crystals.

Apo WT and H84T form very similar structures as indicated by

an overall root-mean-square deviation of 0.26 Å. Nevertheless,

there are significant differences in and around the site of muta-

tion. In WT, H84 stacks on Y83 to form a pi-pi stacking interac-

tion that directs both residues toward CBS II, resulting in a

‘‘wall’’ that separates the two CBS (Figure 4B). In sharp contrast,

in H84T, no pi-pi stacking can occur (Figure 4C). Instead, the

threonine side chain points toward CBS I (Figure 4C). In WT,



Figure 3. Binding of H84T and WT BanLec to Glycoclusters

(A) Structures of the tested glycoclusters.

(B) Titration curves for relative signal intensity, reflecting the extent of binding of WT (blue) and H84T mutant (yellow) BanLec proteins to surface-immobilized

neoglycoprotein in the presence of increasing amounts of the tetravalent maltose-presenting glycocluster (11).

(C) Semilogarithmic illustration of fluorescent surface staining of human SW480 colon adenocarcinoma cells by labeled WT (left) or H84T (right) BanLec. Control

for background (0%value) is given as the gray area, and quantitative data (percentage of positive cells/mean fluorescence intensity) are presented. Lectin staining

was monitored with increasing concentrations (1, 2, and 5 mg/ml; given in a and b), at 2 mg/ml with cells without (gray) or after treatment (black) with 1-deoxy-

mannojirimycin (c and d), and at 1.5 (WT) or 3 (H84T) mg/ml with the tetravalent glycocluster 11 at 1 mM (WT) or 0.75 mM (H84T) (e and f).

See also Tables S2 and S3.
the H84/Y83 stack prevents the side chain of residue 84 from

pointing toward the CBS I.

The X-ray structures of WT and H84T bound to a dimannoside

(M2) feature two dimers in the asymmetric unit forming a non-

biological asymmetric tetramer, and four sets of CBS each

bound to a dimannoside molecule. The position of the first

mannose moiety of M2 is well resolved in the electron density

maps of CBS I and II of both proteins, suggesting that it is tightly

bound to both structures (Figures 4B, 4C, and S3). In CBS I of the
WT and H84T, there are five hydrogen bonds (H-bonds) between

each protein and the first mannose moiety, involving OD1 and

OD2 of D133 and the backbone N of G15, K130, and F131. In

CBS II, there are six H-bonds stabilizing the position of the

saccharide, which include side-chain atoms OD1 and OD2 of

D38 and the backbone N of N35, V36, and G60.

The main difference in ligand binding between the proteins in-

volves the second mannose moiety that is more accessible to

solvent and residue 84. This second mannose moiety gives
Cell 163, 746–758, October 22, 2015 ª2015 Elsevier Inc. 751



Figure 4. A Comparison of the Crystal

Structures of Recombinant WT BanLec

and Its H84T Mutant

(A) Overlay of the structures of a monomer of re-

combinant WT (blue) and H84T (yellow) BanLec.

Both structures are presented as cartoons with

residue 84 shown in ball and stick with oxygen

atoms in red, nitrogen atoms in blue, and carbon

atoms in the color of the monomer. The N and C

termini are labeled. The right image is the result of

rotating the left image 90� toward the viewer. CBS,

carbohydrate-binding site.

(B and C) Binding of a dimannoside to WT BanLec

in blue (B) and to the H84T mutant in yellow (C). A

disaccharide is shown in gray, and individual

atoms are colored as in (A). Residues involved in

hydrogen bonding are shown in ball and stick, and

hydrogen bonds are shown as dashed lines. The

pi-pi stacking between Y83 and H84 in the WT

protein is circled.

See also Figure S3 and Tables S4 and S5.
visible electron density in CBS I for three out of four chains of the

WT protein and all four chains of the H84T protein, but is present

in the CBS II for only one H84T chain. For the CBS I site, each

protein makes one H-bond with the second mannose moiety.

In WT, the H84 side chain does not engage in H-bonds with

the second mannose moiety in the CBS I pocket (Figure 4B),

while in H84T, the side chain of T84 swings into the CBS I pocket

to form a H-bond with this O1 hydroxyl oxygen of the sugar (Fig-

ure 4C). The existence of pi-pi stacking locks the imidazole ring

of H84 toward the CBS II, and its loss in H84T allows for this

reorientation toward the CBS I. Thus, although the global struc-

tures of WT and H84T are not markedly different, the loss of pi-pi

stacking alters the carbohydrate-protein contacts and topologi-

cal presentation of the carbohydrate-binding site, potentially ex-

plaining the difference in their biological behavior.

NMR Spectroscopy and Molecular Dynamics
Simulations Reveal Differences in the Structures of WT
and H84T BanLec
We used solution-state NMR spectroscopy to further delineate

any differences between WT and H84T. NMR spectra showing

a single set of resonances for the monomeric subunit are consis-

tent with both WT and H84T forming symmetric oligomers. How-

ever, both proteins exhibited a tendency to aggregate over time
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and this precluded application of multidi-

mensional NMR experiments for reso-

nance assignments (Sattler et al., 1999).

Although BanLec is a dimer in solution

at physiological pH (Khan et al., 2013),

the X-ray structures reveal the possibility

of BanLec forming asymmetric tetramers.

Therefore it is probable that the high

protein concentration used in NMR

promotes the formation of higher-order

aggregates. To reduce this tendency,

we introduced two mutations: Y46K to

disrupt the protein-protein interactions

of the tetramer and V66D to increase protein hydrophilicity and

to disrupt an additional crystal packing site. The resultant

Y46K/V66D mutants of WT and H84T indeed formed stable di-

mers as judged by 15N NMR spin relaxation measurements

(see below) and resulted in spectra very similar to those of Ban-

Lec without the Y46K/V66D mutations, with the differences pri-

marily localized around the mutation site (Figures S4A and S5).

The double-mutant version of theWTwas used to obtain assign-

ments, which were then used to assign its H84T counterpart and

the corresponding BanLec proteins lacking the double mutation

(Figures S4, S5, and S6). In agreement with the crystal struc-

tures, we observed significant overlap when comparing the 2D
15N-1H HSQC spectra of WT and H84T, indicating that the two

proteins adopt a similar fold (Figure 5A). However, significant dif-

ferences in chemical shifts were observed in the third Greek key,

indicating that the H84T mutation does affect the structural and/

or dynamic properties at this site.

The chemical shift differences betweenWT andH84T span the

entire ligand recognition loop (residues 83–88), which plays

important roles in determining the carbohydrate-binding speci-

ficity (Figures 5B and S4B). The mutation may broadly affect

the conformation of this loop, possibly due to loss of pi-pi stack-

ing as observed in the X-ray structure. We did not observe signif-

icant differences in the 15N NMR spin relaxation rates (Palmer,



Figure 5. Solution NMR Spectroscopy and Molecular Dynamics Simulations Reveal Dynamic Differences in the Conformations of WT and

H84T BanLec at the Third Greek Key
(A) Comparison of H84T mutant and WT BanLec. 15N-1H HSQC spectra of WT (blue) and H84T BanLec (yellow).

(B) Chemical shift changes induced by the H84T mutation color-coded on the structure of WT BanLec.

(C) Chemical shift changes upon pentamannoside binding color-coded on the structure of WT BanLec.

(D) Chemical shift differences between H84T and WT BanLec when interacting with sugar color-coded on the structure of WT BanLec. For (B), (C), and (D), the

magnitude in chemical shift change increases from blue (no change) to red (maximal change). Gray corresponds to residues for which the change could not be

accurately measured. Sugar moieties are in black.

(E) Comparison of WT and H84T Lipari-Szabo order parameters (S2 varies between zero and one for maximal to minimal flexibility/amplitude of motions,

respectively) computed for WT (blue) and H84T (yellow) using accelerated MD.

(F) Proposed mechanism for separating antiviral activity and mitogenicity using the H84T mutation. Top: in the apo-form (left), the pi-pi stacking interaction helps

separate two binding pockets that can engage with branched N-glycans or sugar moieties on different glycan molecules, creating multivalent interactions, while

in the H84T mutant loss of pi-pi stacking between residues 84 and 83 results in a more open binding pocket that can engage multiple sugar moieties on the same

glycanmolecule, limiting the possibility for multivalent interactions. The dashed line symbolizes the capability of the H84T side chain to interact with a sugar in the

CBS I, which helps to retain the capability to interact with a single sugar, while mixing the recognition elements of the two binding sites.

See also Figures S4, S5, S6, and S7.
2004) for these and other sites, indicating thatWT andH84T have

similar dynamics at the picosecond to nanosecond timescales,

as well as similar oligomerization states (Figure S7A). This is

consistent with the similar dynamics observed for WT and

H84T using conventional molecular dynamics (MD) simulations

(Figure S7B). However, accelerated MD simulations (Markwick

and McCammon, 2011), which can probe slower motions,

showed higher flexibility in the ligand recognition loop (83–87)

in H84T as compared to the WT protein, consistent with loss of

stabilizing pi-pi stacking interactions (Figure 5E).

Next, we performed NMR chemical shift titrations to investi-

gate the interaction of WT and H84T proteins with di- and pen-

tamannosides in solution. The addition of dimannose to WT

and H84T or pentamannose to their Y46K/V66Dmutant versions
resulted in significant chemical shift perturbations or broadening

of resonances for residues in and around the sugar-binding

pocket defined by the X-ray structure (Figures 5C, S4C, and

S4D). In all cases, several resonances from residues involved

in sugar binding disappear, e.g., K130 and F131, probably due

to exchange broadening (Palmer, 2004). While the sites that

experience chemical shift perturbations are very similar between

WT and H84T, the perturbations are slightly larger for H84T and

differ in direction, particularly for the recognition loop and when

binding to pentamannose (Figures 5D, S4C, and S4D). Interest-

ingly, the pentamanose-induced perturbations at 84, 85, and 86

tend to diminish the differences at these sites observed in the

absence of sugar, suggesting that sugar binding stabilizes a

more similar backbone conformation for these sites (Figures
Cell 163, 746–758, October 22, 2015 ª2015 Elsevier Inc. 753



Figure 6. Specific NMR Shifts Correlate with Mitogenicity
(A) Comparison of the mitogenic activity of ten types of H84Xmutants to WT BanLec. PBLs were treated with lectin for 3 days and tested for mitogenic activity by

the incorporation of BrdU reported from an ELISA in relative luminescent units (RLUs). A stimulation index (RLUs of treated/RLUs of untreated) of less than ten

(gray line) is considered non-mitogenic. The type of specific amino-acid substitution at position 84 for eachmutant is indicated in each figure. Results withWT are

plotted in blue for each comparison shown.

(B) Antiviral activity of the same BanLec mutants. The anti-HIV activity of each BanLec variant was determined by its ability to block infection of TZM-bl cells with

virus pseudotyped with the envelope from the HIV-1 BaL strain. The percentage of relative light unit (RLU) activity with increasing concentrations of lectin is

plotted for each H84X mutation.

(C) Comparison of NMR chemical shifts for ten representative H84Xmutants of BanLec. 15N-1HHSQCs ofWTBanLec and the different mutants. The color coding

is as follows: WT BanLec (blue), H84T (yellow), H84G (purple), aromatic mutants H84F, H84W, and H84Y (green), and non-aromatic mutants H84D, H84E, H84K,

H84Q, and H84L (red).
S4E and S4F). Overall, these data suggest a greater degree of

conformational reorganization upon sugar binding in H84T as

compared to WT and different sugar-binding modes for the

two proteins, consistent with the X-ray structure.

Correlation between Y83-H84 Stacking, NMR Chemical
Shifts, Mitogenicity, and Antiviral Activity
To further explore the correlation between Y83-H84 stacking,

BanLec conformation, and biological activity, we systematically

substituted H84 with amino acids that have different abilities to

engage in stacking interactions and then examined the conse-

quence on both NMR spectra and biological activity. A panel

of ten H84 BanLec mutants was constructed, systematically re-

placing the imidazole ring with other aromatic structures or with

ionic, polar, or aliphatic groups, and even a hydrogen atom in

H84G. These studies employed the version of BanLec without

the double Y46K/V66D mutation. Replacing H84 with the aro-

matic residues tryptophan (H84W), tyrosine (H84Y), and phenyl-

alanine (H84F), which can maintain favorable stacking interac-

tions, had minimal effects on mitogenicity and anti-HIV activity

(Figures 6A and 6B). In contrast, replacement of the imidazole

by ionic, polar, or aliphatic side chains, including substitutions

by the amino acids lysine (H84K), aspartic acid (H84D), glutamic

acid (H84E), glutamine (H84Q), and leucine (H84L), resulted in

the marked loss of both mitogenicity and anti-HIV activity (Fig-
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ures 6A and 6B). Only a single mutation (H84G) in this panel of

protein variants yielded a reasonably similar, but smaller, drop

in mitogenicity as did H84T, while preserving some antiviral

HIV activity.

NMR spectra of the different mutants yielded excellent overall

overlap, indicating that they all adopt a similar protein fold. The

differences relative to WT protein were concentrated in the third

Greek key (83–87) (Figure 6C). Further analysis of these differ-

ences yielded an interesting trend for several residues; for A86,

the resonances observed in all the mutants fall roughly along a

straight line. Similar behaviors, too, were observed for V87 and

V88, though the magnitude of the change is smaller and more

difficult to resolve due to spectral overlap. Furthermore, mutants

with aromatic residues (H84F, H84W, and H84Y) that can sup-

port pi-pi stacking between residues 83–84 and that have higher

mitogenicity and anti-HIV activity have A86 resonance clustering

upfield along the line as compared to other mutants that disrupt

pi-pi stacking and have lower mitogenicity and reduced anti-HIV

activity (Figure 6). Interestingly, in H84G, which exhibits mitoge-

nicity, A86 also clusters upfield with the other mitogenic mutants

despite disruption of pi-pi stacking. A simple explanation is that

BanLec exists in rapid dynamic equilibrium between two states

and that the mutations differentially shift the relative population

of the two states, with A86, situated on the opposite side of

the third Greek key loop relative to 84, acting as a reporter for



this equilibrium shift. For V87 and V88, such trends aremore diffi-

cult to discern, but clearly resonances cluster depending on

whether aromatic or non-aromatic residues are used in the sub-

stitution. These two residues constitute the back part of the third

Greek key loop. These results suggest that the mutants with ar-

omatic residues maintain pi-pi stacking interactions between

amino acids 83 and 84 (Figure 5F).

Unlike other mutants, H84T retains antiviral activity despite the

loss of mitogenicity. Interestingly, in H84T, the A86 resonance

presents intermediate NMR characteristics between aromatic

and non-aromatic mutants, whereas V87 and V88 cluster with

non-aromatic residues. Additionally, in H84T G85 presents a

very distinct signature, shared only with the H84G, which also re-

tains some antiviral activity, indicating that the two mutants

share some unique conformational properties. This suggests

that the third Greek key loop in the H84T mutant uniquely com-

bines conformational attributes of aromatic and non-aromatic

mutants.

Molecular Basis for Separating Two Activities of BanLec
Both mitogenicity and antiviral activities of BanLec require asso-

ciation with N-glycans, and so most mutations that block mito-

genicity also abolish antiviral activity (Figures 1A and 6). Unlike

other mutants, H84T retains high antiviral activity, which requires

the capacity to home in on viral glycoproteins with sufficient af-

finity. This is achieved despite disrupting pi-pi Y83-H84 stacking,

which is important for sugar binding, possibly due to compensa-

tory interactions between the side chain of T84 and the sugar and

retention of WT-like conformational properties.

In contrast, mitogenicity requires the ability to cross-link

cognate binding partners, beyond a simple association. Our

data suggest that the loss of 83-84 stacking decreases this ca-

pacity in H84T and other mutants both due to slightly reduced

sugar binding affinity (and possibly altered sugar binding spec-

ificity) and also due to disruption of the wall that helps create

two independent sugar-binding sites, each capable of interact-

ing with a distinct glycan molecule (Figure 5F, left). Rather, in

H84T, T84 rotates away from CBS II to interact with sugars in

CBS I, effectively mixing recognition elements in the two bind-

ing sites (Figure 5F, right). This more open binding pocket may

make it more likely for the same glycan molecule to simulta-

neously interact with the two sugar-binding sites and/or binding

at one site may engage elements from the second site, result-

ing in weaker binding affinity for a second glycan molecule

(Figure 5F, right). This makes it less likely for H84T to simulta-

neously interact with multiple glycan molecules as required

for mitogenicity.

DISCUSSION

The Sugar Code underlies a key biological route of information

transfer by which cell-to-cell interactions and cell signaling are

orchestrated. Indeed, sugars can be considered the third type

of biological alphabet, along with nucleotides and amino acids

(Murphy et al., 2013). The receptors for glycans (lectins) are en-

dowed with the capacity to target distinct counterreceptors by

their structure and topological mode of presentation (Gabius

et al., 2015). In doing so, lectins can play a vital role in regulating
biological processes, such as cell growth and the immune

response, and also serve as tools for studying structural aspects

of glycobiology (Kaltner and Gabius, 2012).

It has previously been observed that a single sugar unit can act

as a switch for a complex-type glycan’s 3D structure, thus

altering its ligand reactivity and subsequent signaling (Gabius

et al., 2011). In the case of a bacterial lectin, the H57A substitu-

tion in the cholera toxin B-subunit did not disrupt binding to the

GM1 ganglioside, but did lead to loss of immunomodulatory ac-

tivity and the ability to induce apoptosis, with altered loop posi-

tion and rigidification affecting further cell surface contacts

(Aman et al., 2001). SNPs occur naturally in the genes of human

and animal lectins, and these natural sequence changes can

affect the carbohydrate recognition domain and biological func-

tion, as seen with a human galactose-binding lectin (Ruiz et al.,

2014). In this latter case, an impact on cell proliferation and

trans-interactions has been inferred (Ruiz et al., 2014; Zhang

et al., 2015a). Here, we have demonstrated that two distinct

properties of a lectin can be separated through rational molecu-

lar fine-tuning: BanLec can be engineered to essentially lose its

mitogenicity while retaining very potent antiviral activity. The

resultant H84T BanLec mutant is a broad-spectrum antiviral

agent that is highly active against multiple strains of HCV, influ-

enza, and HIV-1 in tissue culture and in vivo; it will also likely

prove effective against other clinically important viruses with a

suitable presentation of mannose on their surfaces.

Our data suggest that loss of mitogenicity can be achieved by

disrupting 83-84 stacking and disrupting a wall separating two

sugar-binding pockets, thus diminishing polyvalent interactions.

However, doing so while retaining antiviral activity requires a

specific amino-acid substitution (H84T) that may help retain

WT conformational properties, as well as possibly form unique

contacts that can compensate for loss of interactions with the

83-84 stack. It is possible that these basic design principles

can be applied and extended to allow rational engineering of

other lectins for use as antiviral tools and other therapeutic pur-

poses. The recent demonstration that trans-interactions can be

strengthened by the insertion of a linker into the homodimer of

the antiviral galectin-1 (Zhang et al., 2015b) and the work pre-

sented here encourage such efforts. While the term lectin etymo-

logically stems from the Latin word ‘‘legere,’’ meaning to pick,

choose, or select (Boyd, 1954), thus emphasizing the natural

ability of these proteins to target specific carbohydrates, we

have shown that lectins can be made yet more selective through

molecular engineering. Our findings also suggest that custom-

designed lectins can be employed to tease apart fine mecha-

nisms of immune activation. In more general terms, this proof-

of-principle work is likely to inspire the generation of new and

innovative tools in the quest to delineate the intricacies of the

Sugar Code.
EXPERIMENTAL PROCEDURES

Construction and Mutation of BanLec Expression Vectors and

Purification of Recombinant BanLec Mutants

The BanLec cDNA was cloned into a vector, allowing for expression of His-

tagged protein in E. coli, mutagenesis, and purification over a nickel column

as described in the Supplemental Experimental Procedures.
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Assessment of Anti-HIV Activity

Assays testing the anti-HIV activity of WT and H84T BanLec in PBMCs were

performed as described previously, measuring p24 for HIV-1 and p27 for

HIV-2 (Férir et al., 2011). For the TZM-bl cell assays, to each well of a white

96-well plate 100 ml of a solution containing cells, resuspended at 1 3 105

cells/ml in DMEM medium with 25 mM HEPES and 10% FBS, was added.

The next day, the medium was removed by aspiration and fresh medium

containing lectin or PBS as a control was added to the plate at a concentration

2-fold higher than the final concentration. After 30 min of incubation, virus

diluted with medium was added, and the cells were incubated for 48 hr at

37�C. After the incubation, 100 ml of medium were removed and replaced

with 100 ml of ONE-Glo Luciferase reagent (Promega) for determination of

luciferase expression.

HCV Experiments

The anti-HCV activity of BanLec derivatives was determined for different geno-

typic chimeras in Huh-7.5 cells using bicistronic Gaussia luciferase reporter

genomes as described in the Supplemental Experimental Procedures.

Assessment of Anti-Influenza Activity

The in vitro anti-influenza activity of H84T and its efficacy when administered

via the intranasal route to female BALB/c mice challenged with influenza

were assessed as described in the Supplemental Experimental Procedures.

Hemagglutination Assay and ITC

Hemagglutination assays conducted using rabbit erythrocytes and ITC were

carried out as described in the Supplemental Experimental Procedures.

Assessment of Mitogenic Activity by BrdU Incorporation

Mitogenic activity was quantified as is described in the legend of Figure 6 and

further in the Supplemental Experimental Procedures.

Flow Cytometry to Measure Cellular Activation and Bio-Plex

Cytokine Assay

Expression of CD69wasmeasured by flow cytometry and cytokine production

following stimulation with lectin by Bio-Plex assay as described in the Supple-

mental Experimental Procedures.

Vaginal HIV-1 Transmission

BLT mice were anesthetized and received 75 mg of H84T BanLec vaginally in a

volume of 20 ml. 10min after application of the lectin, the mice were challenged

vaginally with 175,000 TCIU of HIV-1 JR-CSF. Mice were bled weekly and the

plasma was analyzed for the presence of viral RNA for 6 weeks as described

previously (Wahl et al., 2012).

Glycocluster Synthesis and Assays

Synthesis of the glycoclusters is described in the Supplemental Experimental

Procedures. The determination of the relative ability of glycoclusters to inhibit

lectin binding to a matrix presenting a glycoligand, given as the inhibitory

concentration (IC) at which the spectrophotometrically determined signal

intensity is reduced by 50% (IC50 value), provides a measure of the engage-

ment of a lectin in multivalent associations. This value and the sensitivity of

lectin binding to the surface of cells in culture in the presence of glyco-

clusters were assayed as described in the Supplemental Experimental

Procedures.

NMR Spectroscopy

All NMR experiments were acquired at 313 K on a 600 MHz spectrometer

equipped with a triple-resonance cryoprobe. Y46K/V66D BanLec assignment

was obtained using a classical 3D assignment strategy. For a more detailed

description, see Supplemental Experimental Procedures.

Crystallization, Data Collection, and Structure Determination

Following crystallization, data were obtained by LS-CAT, and structure, in the

presence or absence of dimannoside, was determined as noted in the Supple-

mental Experimental Procedures.
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MD Simulations

MD simulations were conducted as described in the Supplemental Experi-

mental Procedures. All simulations were conducted using the Amber 12 pack-

age (Case et al., 2005) with the ff99SB*-ILDN force field (Hornak et al., 2006;

Lindorff-Larsen et al., 2012). The accelerated MD simulations were set up

following published protocols (Pierce et al., 2012).

ACCESSION NUMBERS

The accession number for the crystal structure reported in this paper is depos-

ited in PDB: 3RFP. The accession numbers for wild-type BanLec, wild-type in

complex with dimannoside, H84T BanLecmutant, and H84T BanLecmutant in

complex with dimannoside, respectively, reported in this paper are deposited

in PDB: 4PIF, 4PIK, 4PIT, 4PIU.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and five tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2015.09.056.
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